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Lecture 23 

We now turn to considerations of mixtures.  To keep our discussion reasonably simple, 

we will limit our discussion to non-reacting systems, and to non-ionic systems.  In other words, 

we will consider at first only systems that interact weakly.  (As opposed to daily.)  Furthermore, 

we will begin our treatment, and in fact spend most of our time, on mixtures of two components, 

i.e., binary mixtures.  Toward the end of the chapter we will expand our studies to mixtures of 

three components.  However, even though most real mixtures contain more than two components, 

we will learn a great deal about the properties of mixtures in general by thinking carefully about 

two component systems.  One reason that we will focus on binary mixtures is that if we label our 

components A and B, a binary mixture has the nice property that XA + XB = 1, where X is the mole 

fraction of the component.  This equation will make it much easier to simplify some of our results. 

In dealing with mixtures we will have to depend heavily on partial molar quantities.  The 

basic rationale for introducing these partial molar quantities is that because the components of a 

mixture will interact, the parameters that describe these components will be different for the 

mixture than for the pure substances.  In other words, vapor pressure, density, chemical 

potential and molar volume will tend to be different for ethanol than for ethanol in an aqueous 

solution. 

We will illustrate this for the case of molar volumes.  Suppose we have a sample of pure 

H2O(l) at 298K.  We add one mole and the volume increases by 18 ml.  We therefore say that the 

partial molar volume of pure H2O(l) at 298 K = 18 ml.  Now suppose that we have a large sample 

of pure ethanol(l) at 298 K, and add one mole of H2O(l).  In this case, the volume of the solution 

increases only by 14 ml.  In order to describe this increase we say that the partial molar volume of 

H2O in a large volume of EtOH  at 298 K = 14 cm3.  CAN ANYONE SUGGEST WHY THE PARTIAL 
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MOLAR VOLUME OF WATER IN ETHANOL IS SO SMALL? 

We define the partial molar volume as the change in volume of a mixture when a mole 

of a substance is added.  The formal definition of the partial molar volume of the jth component 

in a mixture is 

V = ( V
n

)j
j

p,T,ni
∂
∂

 

It is important to note that Vj  is a function of p, T and the composition of the mixture.  This 

latter is most clear if we look at a plot of the partial molar volume of water as a function of the 

mole fraction of water in a water-ethanol mixture.  You can see from this graph that the partial 

molar volume of water in ethanol continually changes as the mole fraction changes. 

 

 

 

 

 

The result of this is that we can write that for a two component system, V = V(p, T, nA, 

nB).  This means that we can write the differential of V at constant T and p as  

dV ( V
n

) dn +( V
n

) dn V dn +V dn .T p
A

n ,T,p
B

n ,T,p A A B BB A B B, =
∂
∂

∂
∂

=  

In other words for small changes in the mole number of the components of a mixture, the change 

in volume equals the partial molar volume times the change in mole number.  We can also write 

V V n V nA A B B= + . 

However, great care must be taken in using both of these equations since the partial molar volume 



 
 

152 

is not a constant but changes as the composition changes. 

Unlike molar volumes, partial molar volumes can be negative.  As an illustration, if we 

take one mole of MgSO4 and add it to one liter of water we find that the volume decreases by 1.4 

ml.  Thus the partial molar volume of MgCl2 in pure H2O is -1.4 cm3, i.e., 
V
n

∂ 
 ∂ 

 = -1.4 ml.  This 

leads to an interesting and important distinction - partial molar volumes can be negative - molar 

volumes cannot be negative. 

Partial molar quantities can be defined for all extensive variables and can generally be 

defined as W ( W
n

)j
j

≡
∂
∂

, where W is any extensive variable.  The chemical potential is a partial 

molar quantity since it is defined as µ j
j

= ( G
n

)∂
∂

.  As is the case for all partial molar quantities, the 

value of the chemical potential depends on the composition.  In other words, the chemical potential 

of pure ethanol is different from that of ethanol in a 50:50 mixture of ethanol with cyclohexane 

and is different from that of ethanol in a 20:80 mixture of ethanol with cyclohexane.  As we showed 

earlier we can use chemical potentials to relate changes in mole number to the change in the Gibbs 

free energy.  For a change in mole number of components in a two component system, 

 dGT,p = µAdnA + µBdnB    

We also related the Gibbs function at a given temperature and pressure to the chemical potential 

by 

G = µ1n1 + µ2n2 + ... + µjnj + ... 

For a two component system, 

G = µAnA + µBnB 
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If we take the differential of G for this two component system, we get 

dG = µAdnA + nAdµA + µBdnB + nBdµB 

Since G is a state function, this differential must equal the differential we wrote earlier for dG. 

µAdnA +  µBdnB = µAdnA + µBdnB + nAdµA + nBdµB. 

If we cancel out the common terms, we get 

nAdµA + nBdµB = 0,   

which is the form of the Gibbs-Duhem equation for a two component system, and at constant T 

and p.  The general Gibbs-Duhem equation for a system at constant T and p is 

∑ =n d 0j jµ  

This is a very interesting result.  It tells us that the changes of chemical potentials of a mixture are 

coupled.  If one changes the other must change to compensate for the first change. 

EXAMPLE:  Consider a two component system.  The chemical potential of A changes by 

dµA,  What is the corresponding change in dµB?   

nA dµA + nB dµB = 0 

dµB = -(nA / nB) dµA 

The most fundamental transformation of a two component system, and one that we must 

understand if we are going to understand more complicated processes, is mixing.  How does 

mixing affect our most important thermodynamic state functions, H, G, and S? 

Before we turn to a quantitative treatment, let’s consider a simple system, a mixture of 

gases.  Suppose we take a sample bulb containing one mole of H2 at one atm on one side of a 

stopcock and one mole of N2 at one atm on the other side of the stopcock.  The temperature of both 

gases is the same. 
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IF WE OPEN THE STOPCOCK WHAT WILL HAPPEN?  WHAT DO YOU CALL A PROCESS THAT OCCURS 

WITHOUT NEEDING WORK APPLIED?  WHAT DO WE KNOW ABOUT THE FREE ENERGY OF A 

SPONTANEOUS PROCESS AT CONSTANT T AND P?  Therefore we can conclude that ∆G < 0 for the 

mixing of gases. 

 Let's consider what the driving force is for mixing in this example.  It's not pressure, since 

the pressures were the same on both sides.  It's not temperature, since that's the same for both sides.  

It's not energy, since both gases are very non-polar and therefore the energy change due to mixing 

will be negligible.  On reflection, it becomes apparent that the only change that's occurred on 

mixing the two gasses is that the disorder increases, since nitrogen molecules that were surrounded 

initially solely by nitrogen molecules are now surrounded by a combination of nitrogen and 

hydrogen molecules, and vice-versa.  In other words, the driving force for mixing is an increase in 

the entropy of the universe.  It should be noted that energy does have a part in determining the 

extent to which two substances mix - but only because it affects the total entropy change by 

changing the entropy of the surroundings.  Thus, in a case when the process of mixing is 

exothermic, both sysS∆  and surrS∆  are positive, and the mixing occurs readily.  For a case like the 

mixing of oil and water, the unfavorable mixH∆  results in a surrS∆  that is so negative that the overall 

entropy change for the universe is negative as well.  As a result oil and water mix only sparingly.  

Let’s demonstrate this quantitatively for a mixture of ideal gases by generalizing the 
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example we just considered.  We begin with two containers containing different ideal gases both 

at temperature T and pressure p.  The first contains a number of moles nA in volume VA, while the 

second contains a number of moles nB in volume VB at the same p and T.  Remember now that we 

can express the free energy of a system in terms of the chemical potentials of its components with 

the equation 

G n
j

j j= ∑ µ  

So for these two components before mixing, we can write 

Gi = µAnA + µBnB. 

The chemical potential of a system of ideal gases at a given pressure is related to the standard 

chemical potential by 

µ µ= +0
0RT p

p
ln  

So our equation for the initial free energy becomes 

G n ( RT p
p

) n ( + RT p
p

).i A A B B= + +µ µ0
0

0
0ln ln  

Now we bring our two containers together and remove the barrier between them so they can mix.  

The p and T stay the same, because the gases are ideal.  However, even though the total pressure 

stays the same, the pressures that substances A and B exert are now different, since they are spread 

over the entire volume of the combined containers.  Now the pressure of A is pA, the partial 

pressure of A and the pressure of B is pB, the partial pressure of B.  The free energy of the mixture 

is given by 

 G n ( + RT p
p

) n ( RT p
p

).f A A
A

B B
B= + +µ µ0

0
0

0ln ln  
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The difference in free energies before and after mixing, ∆Gmix, is given by  

∆G G G n RT p
p

n RT p
pmix f i A

A
B

B= − = +ln ln  

We can simplify this by noting that nA = XA n, and nB = XB n, where XA and XB are the mole 

fractions of A and B respectively, and by noting that the partial pressures can also be expressed in 

terms of mole fractions, using pJ = XjpT.  Substituting these expressions yields 

∆G X nRT X p
p

X nRT X p
p

nRT(X X X X ).mix A
A

B
B

A A B B= + = +ln ln ln ln  

Since the mole fractions of a mixture are always less than one, both logarithms are negative, and 

∆Gmix < 0.  In general for a mixture of n substances, 

1
ln

n

mix j j
j

G nRT X X
=

∆ = ∑  

Let’s look at an example.  Suppose we have 10-2 mole C2H4, 10-2 mol H2S and one mol Ar 

at a temperature of 298K.  What is the free energy of mixing assuming that all gases are ideal?  

∆G = nRT(X X X X X X )mix C H C H HI HI Ar Ar2 4 2 4
ln ln ln+ +  

= (1.02)(8.314)(298)(.01 ln .01 + .01 ln .01 + .98 ln .98) 

= -282 J. 

We can use our equation for ∆Gmix to calculate ∆Smix and ∆Hmix.  From our fundamental equations 

we can write 

dG = -SdT + Vdp + µAdnA + µBdnB. 

Therefore S = -( G
T

)p,n ,nA B

∂
∂

, and for an ideal gas, 

∆S -( G
T

) -nR(X X X X ).mix A A B B=
∂∆
∂

= +ln ln  



 
 

157 

and for a n component system 

1
ln

n

mix j j
j

S nR X X
=

∆ = − ∑  

In our above example, 

∆G = nRT(X X X X X X ) Jmix C H C H HI HI Ar Ar2 4 2 4
282ln ln ln+ + = −  

From our above result we see that  

∆
∆S - G

T
.949JK .mix

mix= = −0 1  

Finally we can calculate ∆Hmix by noting that ∆H = ∆G + T∆S.  Substituting our equations 

for ∆Gmix and ∆Smix, we get 

∆Hmix = nRT ln (XA ln XA + XB ln XB) - nRT (XA ln XA + XB ln XB) = 0. 

Can anyone explain why the enthalpy of mixing of an ideal gas is zero? 
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Lecture 24 

What we've done so far is fine for gases, but most chemistry is done in condensed phases, 

so it is important to be able to extend these ideas to liquids.  Our first step in doing this is to 

determine the chemical potential of a liquid.  In doing this we want to start with something we 

know, and what we know is the form of the chemical potential of an ideal gas, µ µg + RT p
p

= 0
0ln

.  It would be nice if we could relate this to the chemical potential of a liquid.  WHEN ARE THE 

CHEMICAL POTENTIALS OF A LIQUID AND A VAPOR EQUAL?  [Along the coexistence line.] So for a 

pure substance when the liquid and vapor are at equilibrium,  

A
*

A
*

*

( )= + RT p
p

µ µ

0

0ln  

where we use the asterisk to indicate that we are dealing with a pure substance.  WHAT DO WE CALL 

THE PRESSURE WHEN A LIQUID IS IN EQUILBRIUM WITH ITS VAPOR?  If we use pA* to indicate the 

vapor pressure of pure A, then 

A
*

A
* A

*

( )= + RT p
p

.µ µ

0

0ln  

If instead of being a pure liquid, A is a component in a mixture, its vapor pressure will be 

different than when it is a pure substance.  How does the vapor pressure of a substance in a solution 

differ from that of the pure liquid?  The answer depends on the way the components of the solution 

interact.  The simplest case is that of an ideal solution.  An ideal solution is a solution of two or 

more substances where the intermolecular interaction between the substances (A-B) is the same as 

the average of the interactions between A-A and B-B.  In other words, in an ideal solution, there 

is no net change in intermolecular interactions.  For an ideal solution of two volatile 
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components, the vapor pressure of each component is given by Raoult's Law.  If we use the vapor 

pressure of A as an example, Raoult's law says that 

p X pA A A= *  

Because all ideal solutions follow Raoult's Law, we can alternately define an ideal solution as 

one that follows Raoult's Law. 

We can find the chemical potential of A when it is in an ideal solution by using this result 

for the vapor pressure of an ideal solution in our formula for the chemical potential of a liquid.  

This yields 

µ µA A
A A( ) RT X p
p

. = +0
0ln

*

 

If we take the difference between this equation and that for the chemical potential of the pure 

liquid, we get 

* *
*

0 0ln lnA A A
A A

X p p( )- ( ) RT( )
p p

µ µ = −   

or 

µ µA A A( ) ( ) RT X . = +* ln  

What we've accomplished is to derive an equation relating the chemical potential of a pure liquid 

to the chemical potential of that liquid in any ideal solution.  While we've used the ideal gas law 

in deriving this equation, it is equally valid for real gases.  However, it is only valid for ideal 

solutions. 

When are solutions most likely to be ideal?  I.e., when can we use Raoult's law? Raoult's 

law applies equally well for solutions where one of the solvents is volatile and the other is not, like 

sugar in water, or for solutions with two volatile components like hexane in octane.  It is most 



 
 

160 

valid when the two components are chemically similar, with similar polarities and shapes – i.e. 

two non-polar molecules which are both cyclic or two linear polar species are both likely to form 

good approximations to ideal solutions.  In these situations, Raoult's law predicts that when we 

change the mole fraction of A, pA will change in a linear fashion with a slope equal to the vapor 

pressure of pure A. 

 

 

 

 

For non-ideal solutions, pA can be greater or lower than Raoult's law predicts.   

For ideal solutions, Raoult's law holds for both the solute, which we define as the 

component with the smaller mole fraction, and the solvent, which we define as the component with 

the larger mole fraction.  However, real solutes at low concentrations do not follow Raoult's 

law.  For the solute Raoult's law predicts that pB = XB pB*.  A real solution at low concentrations 

does have a vapor pressure proportional to XB, but not with a slope equal to the vapor pressure of 

the pure liquid.  The slope for the real solution can be larger or smaller than the vapor pressure of 

the pure liquid.  The vapor pressure of a real solute in the limit of low concentration is given by 

Henry's Law,  

 pB = XB kB, 

 where kB, called the Henry’s law constant, has units of pressure and is different than the vapor 

pressure of the pure substance. 

 Although Henry's law is valid for real solutions, it is only valid in the limit of low 

concentration of solute, and thus is an example of a limiting law.  It is a type of ideal law, since it 
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is only valid for a limited range of conditions, and therefore solutions that obey Henry’s Law are 

known as ideal dilute solutions.  To get a graphical feel for the relation between Henry's law and 

Raoult's Law, let’s look at the variation of vapor pressures for an acetone-chloroform mixture. 

 

 

 

 

 

 

 

First we have the prediction of Raoult's Law that the partial pressure of the chloroform 

varies linearly with mole fraction between 0 and the vapor pressure of pure chloroform.  If we 

draw in the vapor pressure of the chloroform in the real solution, we see that the slope of the 

vapor pressure of the real solution is asymptotic with the Raoult’s law value at mole fractions 

close to 1.0, and that therefore the real vapor pressure coincides with the Raoult's law vapor 

pressure only at high mole fractions of chloroform. 

Henry's law says that the variation of vapor pressure with mole fraction at low mole 

fractions will be linear with a slope different than pCHCl3
* .  We can see that we can draw a fairly 

accurate straight line through the lower part of the CHCl3 vapor pressure curve.  Note that we can 

find the Henry's law constant k by extrapolating this straight line to X = 1.  In short, what we see 

from our graph is: 

1) Raoult's law approximates the vapor pressure of a liquid in a real solution, when that 
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liquid is present in mole fractions close to one, i.e., it approximates the vapor pressure of real 

solvents. 

2) Henry's law approximates the vapor pressure of a liquid for real solutions in which the 

liquid is present in a small mole fraction, i.e., it approximates the vapor pressure of real solutes. 

3) The true vapor pressure of the liquid lies between the value given by Raoult's law and 

the Henry's law constant.  In other words, pRAOULT ≤ p ≤ pHENRY or pRAOULT ≥ p ≥ pHENRY.  If the 

vapor pressure of a real solution is lower than that predicted by Raoult’s law, it is called a negative 

deviation from ideality.  If the vapor pressure of a real solution is higher than that predicted by 

Raoult’s law, it is called a positive deviation from ideality. 

When we began our treatment of solutions, we started by calculating the free energy of 

mixing of ideal gases.  This was based on our definitions of the chemical potentials of ideal gases.  

Now that we've developed definitions for the chemical potentials both of pure liquids and liquids 

in solution, let’s calculate the free energy of mixing of liquid solutions.  For simplicity, we'll begin 

with the free energy of mixing of ideal solutions. 

For two pure liquids, A and B, the Gibbs function before mixing is  

Gi = nA µA*(l) + nB µB*(l) 

On mixing the Gibbs Function becomes 

Gf = nA µA(l) + nB µB(l) 

= nA (µA*( l) + RT ln XA) + nB (µB*( l) + RT ln XB). 

If as before, we define ∆Gmix = Gf - Gi, we obtain 

∆Gmix = RT(nA ln XA + nB ln XB) 

= nRT (XA ln XA + XB ln XB). 



 
 

163 

This is the same result that we obtained for mixing two ideal gases.  The other results are the same 

as well. 

∆Smix = nR (XA ln XA + XB ln XB) 

∆Hmix = ∆Umix = 0 

∆Vmix = 0 

It is important to clearly understand that when we talk of a mixture of ideal gases and of an ideal 

solution, the definitions of ideality are different.  When we talk of an ideal gas, we talk of a gas in 

which the interactions between particles are negligible.  WHY CAN'T WE USE THIS DEFINITION FOR 

AN IDEAL LIQUID SOLUTION?  The definition we use of an ideal solution is, crudely, that the average 

interaction between particles in the solution is the same as the average interactions in the liquids 

before the solution was made.  In other words for an ideal gas we say that there are no 

interactions, while for an ideal solution we say that there is no net change in interactions.  A 

real solution differs from an ideal solution in that the interactions in the solution are different from 

the average of those in the pure liquids. 

How do we treat the chemical potential of real solutions?  Remember that the chemical 

potential of a pure liquid is given by  

µ µA A
A
*

( ) + RT p
p

* ln = 0
0  

Here, pA* is the vapor pressure of the pure liquid. For that same substance in solution, the chemical 

potential would be given by 

µ µA A
A( ) + RT p

p
 = 0

0ln  

In this equation pA is the vapor pressure of the liquid in the solution.  If as before, we take the 



 
 

164 

difference between the chemical potential of the pure liquid and the chemical potential of the 

mixture, we get 

µ µA A
A

A

( ) ( ) RT p
p

 = +*
*ln  

This equation is exact and applies to any solution, real or ideal.  Since for an ideal solution, pA = 

XA pA*, our earlier result was 

µ µA A A( ) ( ) RT X = +* ln  

In this equation, we effectively have a new standard state for the liquid, called µA*( l), the pure 

liquid at a pressure of 1 bar. 
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Lecture 25 

If we wanted to determine an equation for the chemical potential of a real solute or solvent 

by substituting an equation of state for pA, the vapor pressure of A, as we did for the pressure of 

gases, we would run into a couple of problems.  First, an accurate equation of state for real 

solutions would be a far worse equation than the virial equation.  It would be very messy and 

would have lots of terms.  Second, no accurate, widely applicable equation of state is known for 

liquids, let alone real solutions. 

To avoid both the first problem and the second, we can modify our ideal solution result as 

we did when we derived equations for the chemical potential of a real gas, by introducing a quantity 

called the activity into our equation.  Thus our equation for the chemical potential of a liquid in a 

real solution becomes 

µ µA A A( ) ( ) RT a = +* ln , 

where in this case, the activity a represents an effective mole fraction.  

For volatile liquids, the activity can be determined experimentally.  Remember that 

µ µA A
A

A

( ) ( )+ RT p
p

 = *
*ln  

Since this equation is true for all solutions, comparison with the previous equation shows that 

RT a RT p
pA

A

A
*ln ln=  

and that therefore 

a p
pA

A

A
*=  

Therefore we conclude that to measure the activity of a volatile solute or solvent we measure the 
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vapor pressure in the solution and divide it by the vapor pressure of the pure liquid.  We see from 

this that the activity depends on p, T, and composition.  This means that for each substance, 

there will be a different activity for each composition of a solution. 

When we defined the fugacity for real gases, we related it to the pressure by introducing 

the fugacity constant γ.  Here again, we use a constant γ, called the activity coefficient, to relate 

the activity of a real solute or solvent to that of the ideal quantity, the mole fraction.  The relation 

is  

aA = γA XA. 

Let’s see what we can figure out about this activity coefficient.  Remember that as the mole fraction 

of a solvent approaches one, that the vapor pressure of the solvent approaches the value predicted 

by Raoult's law, i.e., the ideal value.  This would be expressed in the form of an equation as 

X 1

A

A
A

A

p
p

X
→

=lim *  

But pA/pA* = aA, and therefore 

X 1
A A

A

a X
→

=lim  

Now since aA = γA XA, we will also have 

X 1
A

A →
=lim γ 1 

Notice that for the solvent, the closer our solution is to a pure solvent, the more ideal the 

behavior.  In other words, the more dilute the solution, the more ideally the solvent will behave. 

If we substitute the equation aA = γA XA, in our equation for the chemical potential of a real 

solvent or solute, we get  

A A
*

A( ) ( ) RT X RTµ µ γ = + +ln ln  
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We see that as was the case for the chemical potential of real gases, the chemical potential of real 

liquids is composed of an ideal term, µA* + RT ln XA, and a correction term which contains all the 

deviations from ideality, RT ln γA.   

At this point, we've obtained an equation for the chemical potential of real solvents, 

introducing a new definition of the activity that applies to volatile liquids.  The results we've 

obtained for the activity have general applicability, since they are based on the measurement of 

vapor pressures at various compositions.  However, as we discovered for real gases, these data are 

often cumbersome.  For gases, we find that if the problem doesn't require the accuracy that the 

virial equation provides, we invariably turn to the ideal gas equation, because it is easier to use. 

It would be nice if we find a simple useful approximate equation for solutions.  If we turn 

back to our equation comparing the vapor pressure of real solutions with the various equations that 

describe them, we find that at mole fractions approaching 1 that Raoult’s Law gives a good 

approximation to the vapor pressure of the real solvent. We therefore find that the appropriate 

chemical potential for the solvent is the chemical potential of the ideal solvent, 

µA() = µA*() + RT ln XA. 

This equation should be simple enough for anyone's tastes, but again, because it applies only in 

the limit X → 1, it is only valid for solvents. 

What do we do for solutes? It turns out that examination of our graphs shows that in the 

limit of low concentration, the vapor pressure is fairly accurately given by Henry's Law.  This tells 

us that we should be able to come up with a simple equation for the chemical potential of the 

solute, the low mole fraction component, based on Henry's law, pB = KB XB. 

The exact chemical potential of the solute B is given by 
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B B
* B

B
*RT p

p
.µ µ= + ln  

If we substitute the Henry's Law value for pB in this equation we get  

ln* B B
B B *

B

K XRT
p

µ µ= + , 

which yields in turn 

B B
* B

B
* BRT K

p
+ RT X .µ µ= + ln ln  

Because both the Henry's constant KB and the vapor pressure of the pure solute, PB*, are 

characteristics of the pure solute, we can define a new standard state for solutes, 

B
+

B
* B

B
*RT K

p
µ µ= + ln , 

which yields a new equation for the chemical potential of the solute in the limit of low 

concentration,  

µB = µB
+ + RT ln XB.   

Remember now that although Henry's Law applies to real solutes, it does so only in the 

limit of low concentrations.  If we move to concentrations high enough that Henry's law doesn't 

apply, we could turn to our previous result for real liquids, but it is a more common practice to use 

a specific solute activity aB.  The solute activity is based on our Henry's Law chemical potential, 

and is defined in the equation 

µB = µB
+ + RT ln aB,  

where aB = pB/KB. Once again we introduce the activity coefficient γB, as in the defining equation, 

aB = γB XB.  However, unlike the case of the activity coefficient for the solvent, γB → 1 as XB 
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approaches 0.  In other words, the ideal limit of a solvent is the pure solvent, but the ideal limit of 

a solute is in the limit of infinitely low concentration.  

Why did we go through this relatively tedious process of defining all these new standard 

states, and all these new equations for the chemical potential under various conditions?  One reason 

is that our eventual goal is to apply these results to chemical equilibrium.  When we treat chemical 

equilibria, we will initially do so for ideal gases, and then generalize to real gases, solutions and 

other real systems.  By defining the chemical equilibria in terms of activities, all we need to do to 

modify our results for a new kind of system is to define the activity for that new phase.  In defining 

these activities it is useful if they can be defined so that our equations for chemical potential have 

consistent forms.  For example, if we insert our definition that aB = γB XB into our equation for the 

chemical potential of the solute we get  

µB = µB
+ + RT ln XB + RT ln γB. 

If we compare this with the chemical potential of the solvent, 

µA = µA* + RT ln XA + RT ln γA, 

we see that we have succeeded in obtaining consistent forms for the chemical potential at both low 

and high concentration.  In order to do so we've had to define different standard states for the two 

cases.  In the high concentration (solvent) case, the standard state is µA*, the chemical potential of 

the pure liquid.  In the low concentration case, the standard state is given by 

 B
+

B
* B

B
*RT K

p
µ µ= + ln . 

It is useful to note that all we've been doing in defining each of these standard states is 

manipulating our original equation for the chemical potential of a liquid in a solution, 
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ln* A
A A *

A

p( ) ( ) RT .
p

µ µ= +    Each of our other equations for the chemical potential is a version of 

this equation in terms of convenient constants.  To see this lets take our equation for µB,  µB = µB
+ 

+ RT ln aB, and combine it with our definitions a p
KB

B

B
= , and B

+
B
* B

b
*RT K

p
µ µ= + ln .  A few steps 

of simplification leave us with the chemical potential of B in a solution, B B
* B

B
*( ) RT p

p
µ µ = + ln .  

So we see that no matter what the form, the physical content of these equations is identical. 

When we calculated the chemical potential of the solute and defined the solute activity, it 

was in terms of the mole fractions.  For most solution chemistry, it is more convenient to calculate 

solute concentrations in terms of molality, where molality is defined as moles of solute/kg of 

solvent, i.e., m n
kg(A)

.B=   To calculate chemical potentials and define activities in terms of 

molalities, we turn again to dilute solutions.  In a dilute solution nB << nA, so the mole fraction of 

the solute,  

X n
n n

n
n

.B
B

B A

B

A

=
+

≈  

Since kg(A) α nA, the molality m is proportianal XB in dilute solutions, or equivalently kmB = XB, 

where k is a proportionality constant.  Therefore, we can rewrite our chemical potential for the 

solute at low dilution as 

B B
+ BRT km

m
µ µ= + ln 0  

where m° = 1 mole/kg.  m0 serves two purposes in this equation.  First, it defines a new standard 

state, m° = 1molal = 1 mol/kg.  Second, it makes the quantity kmB/m0 dimensionless.  Our µB now 
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becomes 

B B
+ BRT k RT m

m
.µ µ= + +ln ln

0
 

If we define yet another standard chemical potential, B B
+ RT k,0µ µ= + ln  we now get  

B B
B+ RT m

m
µ µ= 0

0ln  

Now if we incorporate deviations from ideality in this equation, we get 

B B B+ RT a ,µ µ= 0 ln  

where a m
mB
B B=

γ
0

 and as before γB → 1 as mB → 0.  This is true for any solute at any molality. 

In addition to these standard states there is an additional important one, known as the 

“Biochemist’s Standard State”.  This standard state is of particular interest to those studying 

biochemical problems in aqueous solution.  Biochemical systems are so complex that it is often 

difficult to characterize the concentrations of each species in solution.  For example, a solution 

containing H3PO4 may contain H2PO4
-, HPO4

= and PO4
-3 in amounts that are difficult to 

characterize because of the easy interconversion between the species.  As a result, the 

Biochemist’s standard state focuses on the easy to characterize pH.  The pH of choice for this 

standard is pH 7 exactly, since this is close to physiological pH.  This means that the standard 

activity of H+ is defined as 10-7 M, and 
H

a +  = 1 at this concentration.  The activity of all other 

species is defined as the total concentration of all species of that molecule at pH 7: 

                                              Dilute solution:  ,

species

B i B
i

a c= ∑ ,  

where the sum is over the concentration of all the species of molecule B.  In this example above, 
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this would be the sum of the concentrations in moles/l of H3PO4, H2PO4
-, HPO4

-2, and PO4
-3.



 
 

173 

Lecture 26 

Having derived expressions for the chemical activities of ideal and real solutes and 

solvents, it’s time to use them.  We'll look at three applications.  The first is fractional distillation, 

a purification method based on the fact that the composition of a solution of two volatile liquids 

and the composition of the vapor above it will be different.  The second and third examples, boiling 

point elevation and osmotic pressure, arise from the difference in chemical potentials of pure 

substances and substances in solution, and are in a class of so called colligative properties. 

Let’s consider fractional distillation first.  As I just said, fractional distillation is a 

purification method that is based on a liquid solution and its vapor having different compositions.  

Consider an arbitrary solution of two volatile components, A and B.  A has a vapor pressure in its 

pure form of pA*, and a mole fraction XA(l), while B has a vapor pressure in its pure form pB* and 

a mole fraction XB(l).  For the sake of simplicity let’s assume that the solutions are ideal.  Then 

the partial pressure of A is given by pA = XA pA*, and the partial pressure of B is given by pB = XB 

pB*.  Now remember that for a gas the mole fraction i
i

T
X

p
p

= .  This means that the mole fraction 

of A in the vapor phase is given by  

X (g) p
p p

X ( )p
X ( )p + X ( )pA

A

A B

A A

A A B B

=
+

=


 

*

* *  

A similar equation can be determined for XB(g).  It should be clear from this that the composition 

of the vapor, given by XA(g) and XB(g), will be different from the composition of the liquid, given 

by XA(l) and XB(l).  If we can remove the vapor to a separate container and then condense it, we 

will have a new liquid solution with a composition equal to that of the vapor.  Examination of our 

equations shows that this new liquid solution will be enriched in the higher vapor pressure 
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component, and therefore the remainder of the original solution will be enriched in the lower vapor 

pressure component.  It should also be apparent that a repetition of this procedure with the new 

solution will result in further enrichment, leading eventually to complete purification for ideal 

solutions. 

This process is usually represented by the following diagram.  The diagram is one 

 

 of total pressure vs. mole fraction.  It contains two curves.  One curve, the upper one, gives total 

pressure as a function of the composition of the liquid.  The lower curve gives total pressure as a 

function of composition of the vapor.  Remember that the curves will be different because the 

composition of the liquid and the vapor are different. 

We can represent the process we just discussed on this diagram as follows.  First we find 

the mole fraction of one of our components on the x-axis.  We now go to the liquid curve to find 

the vapor pressure of the solution with this composition.  Having found the appropriate pressure, 

we now move horizontally at that pressure, until we intersect the vapor curve.  Moving down from 

the vapor curve to the x-axis tells us the composition of the vapor. 
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We can illustrate the purification process for a mixture of heptane and hexane.  The vapor 

pressure of pure hexane is pA* = 0.198 atm and the vapor pressure of pure heptane is pB* = 0.0600 

atm.  Suppose we begin with a mixture which is half hexane and half heptane by moles, i.e., XHep 

= XHex = 0.5.  The vapor pressure of the hexane will be 0.5 x 0.198 atm = 0.099 atm, and the vapor 

pressure of the heptane is .5 x .0600 atm = .03 atm.  Thus the mole fraction of the hexane in the 

vapor phase, XHex = .099/(.03 + .099) = .77.  XHep = 1. - .77 = .23.  Condensing this vapor would 

yield a liquid solution with this new composition.  So you see that even a single distillation step 

can lead to substantial purification. 

Remember that I said that for an ideal solution, successive distillations will eventually lead 

to complete purification.  This will not necessarily be true for a real solution.  For real solutions 

there are sometimes solutions whose vapor and liquid phases have exactly the same composition.  

Such a composition is called an azeotrope.  Clearly if we have a solution with such a composition, 

distillation would not produce any purification.  If we make a diagram for a real solution with an 

azeotrope, it looks like this. 

 

 

 

 

 

Note that unlike the ideal case, both the liquid and vapor curves are curved.  The azeotrope is the 

point on the diagram where the two curves meet.  A very common azeotrope is that between 

ethanol and water, at a composition of 96% EtOH by volume.  This is the highest degree of 

purification which can be achieved by simple distillation. 
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Our second application is to calculate the boiling point of a solution containing a non-

volatile solute.  We will assume that our solution is ideal.  By looking at our equation for the 

chemical potential of the solvent, µA(l) = µA* + RT ln XA, we can immediately see that the 

chemical potential of the solution will be lower than the chemical potential of the pure solvent.  

This effectively means that the vapor pressure of the solution will be lower and in order to raise it 

sufficiently high for the solution to boil we will have to raise the temperature beyond the 

temperature necessary to boil a pure liquid.  So just by using qualitative reasoning we see that 

solutions will have higher boiling points than pure solvents. 

To quantify this, we note first that our situation can be drawn as follows. 

 

 

 

In the liquid phase we have our solution, which is composed of a volatile solvent plus nonvolatile 

solute.  Since the solute is nonvolatile, only the solvent evaporates, and the vapor phase contains 

pure solvent. Our equilibrium is therefore between a pure vapor and a liquid solution. WHAT IS 

THE CONDITION FOR EQUILIBRIUM?  Therefore we can write 

A
*

A
*

A(g) ( ) RT Xµ µ= + ln  

Since we have a two component system, XA = 1 - XB.  Substituting this in our equation yields,  

A
*

A
*

B(g) ( ) RT (1- X )µ µ= + ln  

which we can rewrite as  

ln(1- X ) (g) ( )
RT

G
RT

H
RT

-
S
R

.B
A
*

A
*

ap ap ap=
−

= =
µ µ 

∆ ∆ ∆v v v  

The whole point of this calculation is to determine the change in boiling point of a solution relative 
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to the pure solvent, so we need to introduce the boiling temperature of the pure solvent.  We do 

this by taking the equation we've just obtained, setting XB = 0 (pure solvent) and setting T = T*, 

where T* is the boiling temperature of the pure solvent.  This gives us for the pure solvent, 

ln(1) 0
H
RT

-
S
R

vap
*

vap= =
∆ ∆

 

We'll introduce the boiling temperature of the pure solvent by taking the difference between the 

equation for the solution and this one.  Before we do this however, we note that the effect of solutes 

on boiling points is often small and as a result we can make the approximation that ∆Hvap and ∆Svap 

are constant over this temperature range.  Subtracting the equations therefore yields, 

ln *(1 X )
H
R

( 1
T

1
T

)B
vap− = −

∆
 

Our next approximation is to assume that XB << 1, in other words, that we have a dilute solution.  

Remember that earlier we said that if X << 1 that ln (1 + x) ≈ x.  Thus ln (1 - XB) ≈ - XB.  Our 

equation now becomes 

− =X
H
R

( 1
T

- 1
T

)B
vap∆

*  

Again, if XB is small, then T will be close to T* and we can make the following approximation, 

1
T

- 1
T

T - T
T T

- T
T*

*

* *2= ≈
∆  

Substituting this into our equation yields 

 
( )

*2
vap

B

H T
X

RT
∆ −∆

− =   

and finally, solving for ΔT gives us our equation for the boiling point elevation: 
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*2
B

vap

X RTT
H

∆ =
∆

  

This change in ∆T refers only to the mole fraction and not to the identity of the solute.  In other 

words, ∆T refers only to XB and not to the identity of B.  Properties which depend on the 

concentration of a solute and not its identity are called colligative properties.  It is important to 

note that the independence of the boiling point elevation on the identity of the solute is only an 

approximation.  Can you identify in which step we introduced the approximation that resulted in 

this independence? 

Other examples of colligative properties are freezing point depression, and osmotic 

pressure.  The calculation of freezing point depression is similar to that of boiling point elevation 

so let’s look at a different property, osmotic pressure.  Osmosis is the passage of a pure liquid into 

a solution separated from it by a semi-permeable membrane.  Such a membrane is one that allows 

solvent to pass through, but not solutes.  An important parameter that indicates the driving force 

for osmosis is the osmotic pressure, π.  The osmotic pressure is defined as the pressure that must 

be applied to a solution in order for osmosis to stop.  To see how this can come about, consider a 

solution and a pure solvent separated by a semipermeable membrane, with external pressure p 

exerted on both sides.  Liquid flows through a semipermeable membrane when molecules of the 

liquid strike the pores of the membrane.  The molecules will strike the pores more frequently for 

the pure liquid than for the solution, since part of the volume of the solution is made up of the 

solute molecules.  Thus, liquid will pass from the pure side to the solution side.  As this happens 

the pressure on the solution side increases.  When the pressure increases, the frequency of 

collisions with the membrane increases.  When the pressure increases to the point where the 

frequency of solvent molecules colliding with both sides of the membrane is equal osmosis will 
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stop. 

As was the case with boiling points this can be treated quantitatively by using chemical 

potentials.  The chemical potential on the pure liquid side is µA*(p), while the chemical potential 

on the solution side is µA(p + π, XA).  Note that on the solution side both the pressure and the 

composition are different than on the pure liquid side.  At equilibrium the two chemical potentials 

are equal.   

A
*

A A(p) (p+ , X )µ µ π=  

For an ideal solution this becomes 

A
*

A
*

A(p) (p ) RT Xµ µ π= + + ln  

In addition, we know that the pressure dependence of µ is given by 

2 1
2

1

p

p
(p )= (p ) Vdp.µ µ + ∫  

Applying this result to our problem yields 

ln
p+* *

AA A p
(p) (p) RT X Vdp

π
µ µ= + + ∫  

We can see already what is going on in osmosis.  We need the chemical potentials of the 

pure liquid and solution sides to be equal for equilibrium.  The effect of having a solution is to 

lower the chemical potential relative to the pure liquid.  The effect of increasing the pressure is to 

increase the chemical potential.  Osmosis occurs until the pressure increases enough that the two 

opposing effects balance, and equilibrium is achieved. 

Canceling the common terms in our equation yields the condition for equilibrium, 

ln
p+

Ap
Vdp -RT X

π
=∫  

For dilute solutions, ln XA = ln (1-XB) ≈ -XB.  In addition if XB is small we can conclude that V  
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is approximately constant as well.  Therefore we can write  

V π = RT XB 

Since our solution is dilute, nB << nA and we can write XB ≈ nB/nA, which yields 

πV  = RT nB/nA. 

Finally we note that for a dilute solution, nA V  ≈ V.  Substitution of this result yields the van't 

Hoff equation,  

πV = nBRT, 

a wonderful equation which relates osmotic pressure, volume, temperature and mole number of 

the solute in a way analogous to the ideal gas law.  ARE THERE ANY LIMITS TO THE APPLICABILITY 

OF THIS EQUATION? 
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Lecture 27 

I'd like to go back to one-component systems for a while, and look again at our phase 

diagram.  Remember that we have three regions, solid, liquid and vapor.  Now suppose that we are 

within the vapor region and at equilibrium.  We can change both the pressure and temperature 

independently and retain the equilibrium.  If in contrast we are along one of the phase boundaries, 

we can change only one variable independently and maintain equilibrium.  For example, if water 

and water vapor are at equilibrium at 373.15 K and 101 kPa, then if we change the temperature to 

300 K, there will be only one pressure at which the two phases will be remain in equilibrium.  

Finally, if we are at the triple point, where all three phases are in equilibrium, then changing only 

one variable will remove the system from equilibrium.  In other words, when there is only one 

phase we can vary both intensive variables independently.  When two phases are in equilibrium, 

we can vary one intensive variable independently, and when three are in equilibrium we can't vary 

any.  We call the number of variables we can vary independently the number of degrees of 

freedom of the system.   

It is useful to be able to predict how many degrees of freedom a system will have.  In part 

this is because in the practical task of making new materials, it can be crucial to know how to 

control phase transitions, and to know just how precisely the experimental conditions need to be 

controlled to retain the desired phase.  This may be trivial for one component systems, but for 

systems involving several components, which include most chemical reaction mixtures and many 

of our advanced materials, the number of degrees of freedom may not be transparent. 

Fortunately, there is a simple rule that relates numbers of components, number of phases, 

and degrees of freedom, called the Gibbs phase rule.  We will derive this rule in a moment, but 

first we need to clarify the idea of number of components.  We define the number of components 
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in a system as the minimum number of independent species necessary to define the 

composition of all the phases present in the system.  Note that we specifically mention 

independent species.   

Let’s do a simple example.  Suppose that we have water at its triple point.  Here we have 

ice, liquid water, and water vapor, but we have only one component, since water is the only species 

necessary to define all three phases.  Similarly, if we have a mixture of Ar and Cl2, we have two 

components, no matter how many phases are present. 

Now let’s turn to a more complex case, one in which there are chemical species in 

equilibrium.  Here we need to look carefully at the independence of the species.  Suppose now that 

we have NH4Cl(s) in an evacuated container, and it decomposes according to the equation  

NH4Cl(s) → NH3(g) + HCl(g). 

This system has only one component.  This is because all three of the chemical species are 

interdependent.  The gases are present in equimolar quantities because they both came from the 

solid.  You can check the number of components in these reactive systems by first imagining that 

the species have reacted to form the maximum amount of product, and then counting the species 

left. Then you imagine that the species have reacted to form the maximum amount of reactant and 

counting the species left.  Whichever number is smaller is the number of components.  For 

example, in this case, if all of the NH4Cl(s) is reacted, we have two species present, with equal 

number of moles of NH3 and HCl.  If all of the NH3 and HCl are reacted, since they are present in 

stoichiometric ratios, only NH4Cl will be left, one species.  Therefore, this system has one 

component. Even if we had started with the two gases in equimolar quantities, we still would have 

only one component, since the number of components is the minimum number of independent 
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species necessary to define the composition of all phases, and our test still yields just one 

component. 

Now here comes a subtlety.  Let’s consider the same system, but now let’s start with 4 

moles of NH3(g) and 1 mole of HCl(g) and let them come to equilibrium with the solid.  We now 

have two components, because the presence of the solid can no longer account for all species.  To 

see this more clearly consider the limit in which all of the HCl has reacted.  We are left with two 

components, the NH4Cl(s) and the HCl(g).  Thus the solid cannot account for all species present. 

Notice that the issue of independence only comes into play when there is an equilibrium 

between two or more of the chemical constituents of a system.  The effect of these equilibria on 

the number of components is represented by the equation 

c = s - r 

where c is the number of independent components, s is the number of different chemical species, 

and r is the number of restrictive conditions.  

Let’s apply this equation to our two cases.  In the case where we begin with NH4Cl(s), we 

have three chemical constituents, NH4Cl(s), NH3(g), and HCl(g), so s = 3.  We also have two 

restrictive conditions.  One is the equilibrium,  

4 3( ) ( ) ( )NH Cl s NH g HCl g+ . 

The second is the condition that the two gases be present in equimolar quantities, which arises 

because both are formed from the solid,  

p pNH g HCl g3 ( ) ( )=  

Therefore c = s - r = 3 - 2 = 1, and we have only one component.   

Now if we consider the second case we have three chemical constituents as well, but now 
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we have only one restrictive condition, the equilibrium, so c = s - r = 3 - 1 = 2 and we have two 

components. 

We have been considering this issue so we could figure out how many degrees of freedom 

were present in a given chemical system.  In other words, if we have a chemical system with 

multiple phases in equilibrium, is it possible to change any of our intensive variables and still 

maintain our equilibrium?  We begin by considering a one component, two phase system.  The 

Gibbs-Duhem equation tells us that for each phase 

-S dT + V dp + n dµ = 0, 

so that when we fix T and P, µ is fixed as well.  Therefore for any arbitrary place on the phase 

diagram, the state is defined by four variables, Tα, Tβ, pα, and pβ, where α and β are the two phases.  

Now let’s require that the two phases be in equilibrium.  By so doing we impose three restraints 

on the system. They are  

1) Tα = Tβ (Thermal Equilibrium) 

2) pα = pβ (Mechanical equilibrium) 

3) µα(Tα,pα) = µβ(Tβ, pβ) (phase equilibrium). 

These three constraints are equations that relate the four variables so that only one variable is 

independent.  This is similar to problems you work in algebra, where a system of three equations 

with four variables has only one independent variable.  We conclude from this that a one 

component system with two phases in equilibrium has only one degree of freedom.  In other 

words, if we have water and ice in equilibrium at 101 kPa and 273.15K, and raise the temperature 

to 278.15 K, then peq at 278.15 is fixed.  If the system is under any other pressure at this temperature 

then there will be no equilibrium between the ice and the water.  We can abbreviate this conclusion 
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by saying that f = 1, p = 2, and c = 1, where f is the number of degrees of freedom, p is the number 

of phases and c is the number of components.   

Now suppose we have a one component system with three phases in equilibrium.  Now we 

have six variables that define the state, the temperature and pressure of each phase, Ts, ps, Tl, pl, 

Tg, pg.  In addition we have six equations that relate these variables.   

Ts = Tl = Tg 

Ps = Pl = Pg 

µs(Ts,ps) = µl(Tl,pl) = µg(Tg, pg). 

Since we have six variables with six equations, there are zero degrees of freedom.  In other words, 

once we simultaneously solve the six equations, all values of T and p are fixed and there will be 

only one pair of T and p for which the three phases will be in equilibrium.  In other words in this 

case, f = 0, p = 3 and c = 1. 

We can generalize these arguments to any number of phases and any number of 

components, but with the limitation that we consider only neutral mixtures. Remember that 

our free energy is a function of T, P and the ni.  This is equivalent to the free energy being a 

function of T, p and the Xi.  Since the Xi are not the same for each phase in a multiphase system, 

the free energy must be a function of T, p and the set of Xi’s for each phase.  The T, p, and Xi’s 

define the number of variables that describe the system.  How many variables is this and how many 

are independent?  For this more general case we will use a new argument. 

Let the number of components be denoted by c and be numbered from 1 to c, and the 

number of phases by p, and be designated by Greek letters, α, β, γ, etc.  Thus each phase is 

described by c mole fractions, and therefore the p phases are described by cp mole fractions.  
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Adding in T and p yields cp + 2 variables describing the system. 

To determine how many are independent, we need to define the equations that link these 

variables.  First, in each phase, the total of the mole fractions must be one: 

x x xc1 2 1α α α+ + + =... . 

Since this is true for each of the p phases, this yields a set of p equations.  Now we need to add the 

requirements for equilibrium.  We have already included the requirement for thermal and 

mechanical equilibrium by choosing only one temperature and pressure to describe the whole 

system.  What is left is the material equilibrium.  The way this is expressed for a multicomponent 

multiphase system is that the chemical potential for each phase must be the same for each 

component, i.e. for component α we have 

µ µ µα β γ
1 1 1= = = ... . 

Since there are p equalities this equals p-1 equations.  Since we have c components this means that 

we have p-1 equations for each of the c components.  Therefore the material equilibrium 

requirement adds a total of c(p-1) equations. 

 We started out with cp + 2 variables, and now we can figure out our degrees of freedom.   

f cp p c p= + − − −2 1( )  

= + − − + = + −cp p cp c c p2 2 . 

This equation is known as the Gibbs Phase Rule.   

So for our one component two phase example, we have c = 1, p = 2 and f = 1+2-2=1.  In 

addition to telling us the number of variables we can vary and still maintain equilibrium, the Gibbs 

phase rule tells us the maximum number of phases that can simultaneously be in equilibrium.  For 

example, in our one component system, if we let p = 4 we get f = 1 + 2 - 4 = -1, which is impossible, 
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so as a result we find we can have a maximum of three phases in a one component system. 


